NAG Toolbox for MATLAB

d05ab

1 Purpose

d05ab solves any linear nonsingular Fredholm integral equation of the second kind with a smooth kernel.

2 Syntax

$$[f, c, ifail] = d05ab(k, g, lambda, a, b, odorev, ev, n)$$

3 Description

d05ab uses the method of El-Gendi 1969 to solve an integral equation of the form

$$f(x) - \lambda \int_{a}^{b} k(x, s) f(s) \, ds = g(x)$$

for the function f(x) in the range $a \le x \le b$.

An approximation to the solution f(x) is found in the form of an n term Chebyshev-series $\sum_{i=1}^{n} c_i T_i(x)$,

where l indicates that the first term is halved in the sum. The coefficients c_i , for i = 1, 2, ..., n, of this series are determined directly from approximate values f_i , for i = 1, 2, ..., n, of the function f(x) at the first n of a set of m + 1 Chebyshev points

$$x_i = \frac{1}{2}(a+b+(b-a)\times\cos[(i-1)\times\pi/m]), \qquad i=1,2,\ldots,m+1.$$

The values f_i are obtained by solving a set of simultaneous linear algebraic equations formed by applying a quadrature formula (equivalent to the scheme of Clenshaw and Curtis 1960) to the integral equation at each of the above points.

In general m = n - 1. However, advantage may be taken of any prior knowledge of the symmetry of f(x). Thus if f(x) is symmetric (i.e., even) about the mid-point of the range (a, b), it may be approximated by an even Chebyshev-series with m = 2n - 1. Similarly, if f(x) is anti-symmetric (i.e., odd) about the mid-point of the range of integration, it may be approximated by an odd Chebyshev-series with m = 2n.

4 References

Clenshaw C W and Curtis A R 1960 A method for numerical integration on an automatic computer *Numer*. *Math.* **2** 197–205

El-Gendi S E 1969 Chebyshev solution of differential, integral and integro-differential equations *Comput. J.* **12** 282–287

5 Parameters

5.1 Compulsory Input Parameters

1: k - string containing name of m-file

k must compute the value of the kernel k(x,s) of the integral equation over the square $a \le x \le b$, $a \le s \le b$.

Its specification is:

$$[result] = k(x, s)$$

[NP3663/21] d05ab.1

d05ab NAG Toolbox Manual

Input Parameters

1: x - double scalar

2: s – double scalar

The values of x and s at which k(x, s) is to be calculated.

Output Parameters

1: result – double scalar

The result of the function.

2: g - string containing name of m-file

g must compute the value of the function g(x) of the integral equation in the interval $a \le x \le b$. Its specification is:

[result] = g(x)

Input Parameters

1: x - double scalar

The value of x at which g(x) is to be calculated.

Output Parameters

1: result – double scalar

The result of the function.

3: lambda – double scalar

The value of the parameter λ of the integral equation.

4: a - double scalar

a, the lower limit of integration.

5: **b – double scalar**

b, the upper limit of integration.

Constraint: $\mathbf{b} > \mathbf{a}$.

6: odorev – logical scalar

Indicates whether it is known that the solution f(x) is odd or even about the mid-point of the range of integration. If **odorev** is **true** then an odd or even solution is sought depending upon the value of **ev**.

7: **ev** – **logical scalar**

Is ignored if **odorev** is **false** Otherwise, if **ev** is **true**, an even solution is sought, whilst if **ev** is **false**, an odd solution is sought.

8: n - int32 scalar

the number of terms in the Chebyshev-series which approximates the solution f(x).

Constraint: $\mathbf{n} > 0$.

d05ab.2 [NP3663/21]

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

cm, f1, wk, ldcm, nt2p1

5.4 Output Parameters

1: f(n) – double array

The approximate values f_i , for $i = 1, 2, ..., \mathbf{n}$, of the function f(x) at the first \mathbf{n} of m + 1 Chebyshev points (see Section 3), where

```
m = 2\mathbf{n} - 1
if odorev = true and ev = true
m = 2\mathbf{n} if odorev = true and ev = false
m = \mathbf{n} - 1
```

If **odorev** is **true**, then $m = 2 \times \mathbf{n} - 1$ if **ev** is **true** and $m = 2 \times \mathbf{n}$ if **ev** is **false**; otherwise $m = \mathbf{n} - 1$.

2: $\mathbf{c}(\mathbf{n}) - \mathbf{double}$ array

if odorev = false

The coefficients c_i , for $i = 1, 2, ..., \mathbf{n}$, of the Chebyshev-series approximation to f(x). When **odorev** is **true**, this series contains polynomials of even order only or of odd order only, according to **ev** being **true** or **false** respectively.

3: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, $\mathbf{a} \ge \mathbf{b}$ or $\mathbf{n} < 1$.

ifail = 2

A failure has occurred due to proximity to an eigenvalue. In general, if **lambda** is near an eigenvalue of the integral equation, the corresponding matrix will be nearly singular. In the special case, m = 1, the matrix reduces to a zero-valued number.

7 Accuracy

No explicit error estimate is provided by the function but it is possible to obtain a good indication of the accuracy of the solution either

- (i) by examining the size of the later Chebyshev coefficients c_i , or
- (ii) by comparing the coefficients c_i or the function values f_i for two or more values of **n**.

8 Further Comments

The time taken by d05ab depends upon the value of **n** and upon the complexity of the kernel function k(x, s).

[NP3663/21] d05ab.3

d05ab NAG Toolbox Manual

9 Example

```
d05ab_g.m
 function [result] = g(x)
   result = 1;
 d05ab_k.m
 function [result] = k(x, s)
  result = 1/(1+(x-s)*(x-s));
lambda = -0.3183;
a = -1;
b = 1;
odorev = true;
ev = true;
n = int32(5);
[f, c, ifail] = d05ab('d05ab_k', 'd05ab_g', lambda, a, b, odorev, ev, n)
f =
   0.7557
    0.7453
    0.7173
    0.6832
   0.6605
c =
    1.4152
   0.0494
   -0.0010
   -0.0002
   0.0000
ifail =
```

d05ab.4 (last) [NP3663/21]